Object interaction

Functions for interacting with a Seurat object

AnchorSet-class AnchorSet

The AnchorSet Class

BridgeReferenceSet-class BridgeReferenceSet

The BridgeReferenceSet Class The BridgeReferenceSet is an output from PrepareBridgeReference

Cells(<SCTModel>) Cells(<SlideSeq>) Cells(<STARmap>) Cells(<VisiumV1>)

Get Cell Names

CreateSCTAssayObject()

Create a SCT Assay object

DietSeurat()

Slim down a Seurat object

FilterSlideSeq()

Filter stray beads from Slide-seq puck

GetAssay()

Get an Assay object from a given Seurat object.

GetImage(<SlideSeq>) GetImage(<STARmap>) GetImage(<VisiumV1>)

Get Image Data

GetIntegrationData()

Get integration data

GetTissueCoordinates(<SlideSeq>) GetTissueCoordinates(<STARmap>) GetTissueCoordinates(<VisiumV1>) GetTissueCoordinates(<VisiumV2>)

Get Tissue Coordinates

HVFInfo(<SCTAssay>)

Get Variable Feature Information

IntegrationAnchorSet-class IntegrationAnchorSet

The IntegrationAnchorSet Class

IntegrationData-class IntegrationData

The IntegrationData Class

ModalityWeights-class ModalityWeights

The ModalityWeights Class

Radius(<SlideSeq>) Radius(<STARmap>) Radius(<VisiumV1>)

Get Spot Radius

RenameCells(<SCTAssay>) RenameCells(<SlideSeq>) RenameCells(<STARmap>) RenameCells(<VisiumV1>)

Rename Cells in an Object

levels(<SCTAssay>) `levels<-`(<SCTAssay>)

The SCTModel Class

SCTResults() `SCTResults<-`()

Get SCT results from an Assay

STARmap-class STARmap

The STARmap class

ScaleFactors() scalefactors()

Get image scale factors

SetIntegrationData()

Set integration data

SplitObject()

Splits object into a list of subsetted objects.

TopCells()

Find cells with highest scores for a given dimensional reduction technique

TopFeatures()

Find features with highest scores for a given dimensional reduction technique

TopNeighbors()

Get nearest neighbors for given cell

TransferAnchorSet-class TransferAnchorSet

The TransferAnchorSet Class

UpdateSCTAssays()

Update pre-V4 Assays generated with SCTransform in the Seurat to the new SCTAssay class

VisiumV1-class VisiumV1

The VisiumV1 class

VisiumV2-class VisiumV2

The VisiumV2 class

as.CellDataSet()

Convert objects to CellDataSet objects

as.Seurat(<CellDataSet>) as.Seurat(<SingleCellExperiment>)

Convert objects to Seurat objects

as.SingleCellExperiment()

Convert objects to SingleCellExperiment objects

as.sparse(<H5Group>) as.data.frame(<Matrix>)

Cast to Sparse

merge(<SCTAssay>)

Merge SCTAssay objects

subset(<AnchorSet>)

Subset an AnchorSet object

Preprocessing

Functions for preprocessing single-cell data

CalculateBarcodeInflections()

Calculate the Barcode Distribution Inflection

FetchResiduals()

Calculate pearson residuals of features not in the scale.data

FindSpatiallyVariableFeatures()

Find spatially variable features

FindVariableFeatures()

Find variable features

GetResidual()

Calculate pearson residuals of features not in the scale.data

HTODemux()

Demultiplex samples based on data from cell 'hashing'

Load10X_Spatial()

Load a 10x Genomics Visium Spatial Experiment into a Seurat object

LoadCurioSeeker()

Load Curio Seeker data

LoadSTARmap()

Load STARmap data

LogNormalize()

Normalize Raw Data

MULTIseqDemux()

Demultiplex samples based on classification method from MULTI-seq (McGinnis et al., bioRxiv 2018)

NormalizeData()

Normalize Data

Read10X()

Load in data from 10X

Read10X_Coordinates()

Load 10X Genomics Visium Tissue Positions

Read10X_Image()

Load a 10X Genomics Visium Image

Read10X_ScaleFactors()

Load 10X Genomics Visium Scale Factors

Read10X_h5()

Read 10X hdf5 file

Read10X_probe_metadata()

Read10x Probe Metadata

ReadAkoya() LoadAkoya()

Read and Load Akoya CODEX data

ReadMtx()

Load in data from remote or local mtx files

ReadNanostring() LoadNanostring()

Read and Load Nanostring SMI data

ReadSlideSeq()

Load Slide-seq spatial data

ReadVitessce() LoadHuBMAPCODEX()

Read Data From Vitessce

ReadVizgen() LoadVizgen()

Read and Load MERFISH Input from Vizgen

LoadXenium() ReadXenium()

Read and Load 10x Genomics Xenium in-situ data

RelativeCounts()

Normalize raw data to fractions

RunMarkVario()

Run the mark variogram computation on a given position matrix and expression matrix.

RunMoransI()

Compute Moran's I value.

SCTransform()

Perform sctransform-based normalization

SampleUMI()

Sample UMI

ScaleData()

Scale and center the data.

SubsetByBarcodeInflections()

Subset a Seurat Object based on the Barcode Distribution Inflection Points

Differential expression

Functions for testing differential gene (feature) expression

FindAllMarkers()

Gene expression markers for all identity classes

FindConservedMarkers()

Finds markers that are conserved between the groups

FindMarkers()

Gene expression markers of identity classes

FoldChange()

Fold Change

PrepSCTFindMarkers()

Prepare object to run differential expression on SCT assay with multiple models

Dimensional Reduction

Functions to reduce the dimensionality of datasets

JackStraw()

Determine statistical significance of PCA scores.

L2CCA()

L2-Normalize CCA

L2Dim()

L2-normalization

PCASigGenes()

Significant genes from a PCA

ProjectDim()

Project Dimensional reduction onto full dataset

ProjectUMAP()

Project query into UMAP coordinates of a reference

RunCCA()

Perform Canonical Correlation Analysis

RunGraphLaplacian()

Run Graph Laplacian Eigendecomposition

RunICA()

Run Independent Component Analysis on gene expression

RunPCA()

Run Principal Component Analysis

RunSLSI()

Run Supervised Latent Semantic Indexing

RunSPCA()

Run Supervised Principal Component Analysis

RunTSNE()

Run t-distributed Stochastic Neighbor Embedding

RunUMAP()

Run UMAP

ScoreJackStraw()

Compute Jackstraw scores significance.

Clustering

Functions to cluster single-cell data

BuildNicheAssay()

Construct an assay for spatial niche analysis

FindClusters()

Cluster Determination

FindMultiModalNeighbors()

Construct weighted nearest neighbor graph

FindNeighbors()

(Shared) Nearest-neighbor graph construction

FindSubCluster()

Find subclusters under one cluster

Integration

Functions related to the Seurat v3 integration and label transfer algorithms

AnnotateAnchors()

Add info to anchor matrix

BridgeCellsRepresentation()

Construct a dictionary representation for each unimodal dataset

CCAIntegration()

Seurat-CCA Integration

FastRPCAIntegration()

Perform integration on the joint PCA cell embeddings.

FindBridgeIntegrationAnchors()

Find integration bridge anchors between query and extended bridge-reference

FindBridgeTransferAnchors()

Find bridge anchors between query and extended bridge-reference

FindIntegrationAnchors()

Find integration anchors

FindTransferAnchors()

Find transfer anchors

GetTransferPredictions()

Get the predicted identity

HarmonyIntegration()

Harmony Integration

IntegrateData()

Integrate data

IntegrateEmbeddings()

Integrate low dimensional embeddings

IntegrateLayers()

Integrate Layers

JointPCAIntegration()

Seurat-Joint PCA Integration

LocalStruct()

Calculate the local structure preservation metric

MapQuery()

Map query cells to a reference

MappingScore()

Metric for evaluating mapping success

MixingMetric()

Calculates a mixing metric

NNtoGraph()

Convert Neighbor class to an asymmetrical Graph class

PredictAssay()

Predict value from nearest neighbors

PrepSCTIntegration()

Prepare an object list normalized with sctransform for integration.

PrepareBridgeReference()

Prepare the bridge and reference datasets

ProjectDimReduc()

Project query data to reference dimensional reduction

ProjectIntegration()

Integrate embeddings from the integrated sketched.assay

SelectIntegrationFeatures()

Select integration features

SelectIntegrationFeatures5()

Select integration features

SelectSCTIntegrationFeatures()

Select SCT integration features

TransferData()

Transfer data

UnSketchEmbeddings()

Transfer embeddings from sketched cells to the full data

Spatial

Functions related to the analysis of spatially-resolved single-cell data

Cells(<SCTModel>) Cells(<SlideSeq>) Cells(<STARmap>) Cells(<VisiumV1>)

Get Cell Names

FilterSlideSeq()

Filter stray beads from Slide-seq puck

FindSpatiallyVariableFeatures()

Find spatially variable features

GetImage(<SlideSeq>) GetImage(<STARmap>) GetImage(<VisiumV1>)

Get Image Data

GetTissueCoordinates(<SlideSeq>) GetTissueCoordinates(<STARmap>) GetTissueCoordinates(<VisiumV1>) GetTissueCoordinates(<VisiumV2>)

Get Tissue Coordinates

ISpatialDimPlot()

Visualize clusters spatially and interactively

ISpatialFeaturePlot()

Visualize features spatially and interactively

ImageDimPlot()

Spatial Cluster Plots

ImageFeaturePlot()

Spatial Feature Plots

LinkedDimPlot() LinkedFeaturePlot()

Visualize spatial and clustering (dimensional reduction) data in a linked, interactive framework

PolyFeaturePlot()

Polygon FeaturePlot

Radius(<SlideSeq>) Radius(<STARmap>) Radius(<VisiumV1>)

Get Spot Radius

STARmap-class STARmap

The STARmap class

ScaleFactors() scalefactors()

Get image scale factors

SlideSeq-class SlideSeq

The SlideSeq class

SpatialPlot() SpatialDimPlot() SpatialFeaturePlot()

Visualize spatial clustering and expression data.

VisiumV1-class VisiumV1

The VisiumV1 class

VisiumV2-class VisiumV2

The VisiumV2 class

Sketching

Functions for flexible analysis of massively scalable datasets

LeverageScore()

Leverage Score Calculation

ProjectData()

Project full data to the sketch assay

SketchData()

Sketch Data

TransferSketchLabels()

Transfer data from sketch data to full data

Mixscape

Functions related to the mixscape algorithm

CalcPerturbSig()

Calculate a perturbation Signature

DEenrichRPlot()

DE and EnrichR pathway visualization barplot

MixscapeHeatmap()

Differential expression heatmap for mixscape

MixscapeLDA()

Linear discriminant analysis on pooled CRISPR screen data.

PlotPerturbScore()

Function to plot perturbation score distributions.

PrepLDA()

Function to prepare data for Linear Discriminant Analysis.

RunLDA()

Run Linear Discriminant Analysis

RunMixscape()

Run Mixscape

Visualization

Functions for plotting data and adjusting

AugmentPlot()

Augments ggplot2-based plot with a PNG image.

AutoPointSize()

Automagically calculate a point size for ggplot2-based scatter plots

BGTextColor()

Determine text color based on background color

BarcodeInflectionsPlot()

Plot the Barcode Distribution and Calculated Inflection Points

CellScatter()

Cell-cell scatter plot

CellSelector() FeatureLocator()

Cell Selector

CollapseEmbeddingOutliers()

Move outliers towards center on dimension reduction plot

ColorDimSplit()

Color dimensional reduction plot by tree split

CombinePlots()

Combine ggplot2-based plots into a single plot

BlackAndWhite() BlueAndRed() CustomPalette() PurpleAndYellow()

Create a custom color palette

DimHeatmap() PCHeatmap()

Dimensional reduction heatmap

DimPlot() PCAPlot() TSNEPlot() UMAPPlot()

Dimensional reduction plot

DiscretePalette()

Discrete colour palettes from pals

DoHeatmap()

Feature expression heatmap

DotPlot()

Dot plot visualization

ElbowPlot()

Quickly Pick Relevant Dimensions

FeaturePlot()

Visualize 'features' on a dimensional reduction plot

FeatureScatter()

Scatter plot of single cell data

GroupCorrelationPlot()

Boxplot of correlation of a variable (e.g. number of UMIs) with expression data

HTOHeatmap()

Hashtag oligo heatmap

HoverLocator()

Hover Locator

IFeaturePlot()

Visualize features in dimensional reduction space interactively

ISpatialDimPlot()

Visualize clusters spatially and interactively

ISpatialFeaturePlot()

Visualize features spatially and interactively

ImageDimPlot()

Spatial Cluster Plots

ImageFeaturePlot()

Spatial Feature Plots

JackStrawPlot()

JackStraw Plot

LabelClusters()

Label clusters on a ggplot2-based scatter plot

LabelPoints()

Add text labels to a ggplot2 plot

LinkedDimPlot() LinkedFeaturePlot()

Visualize spatial and clustering (dimensional reduction) data in a linked, interactive framework

NNPlot()

Highlight Neighbors in DimPlot

PlotClusterTree()

Plot clusters as a tree

PolyDimPlot()

Polygon DimPlot

PolyFeaturePlot()

Polygon FeaturePlot

RidgePlot()

Single cell ridge plot

SeuratTheme() CenterTitle() DarkTheme() FontSize() NoAxes() NoLegend() NoGrid() SeuratAxes() SpatialTheme() RestoreLegend() RotatedAxis() BoldTitle() WhiteBackground()

Seurat Themes

SpatialPlot() SpatialDimPlot() SpatialFeaturePlot()

Visualize spatial clustering and expression data.

VariableFeaturePlot()

View variable features

VizDimLoadings()

Visualize Dimensional Reduction genes

VlnPlot()

Single cell violin plot

Intensity() Luminance()

Get the intensity and/or luminance of a color

Function related to tree-based analysis of identity classes

BuildClusterTree()

Phylogenetic Analysis of Identity Classes

Utility functions

Useful functions to help with a variety of tasks

AddAzimuthResults()

Add Azimuth Results

AddModuleScore()

Calculate module scores for feature expression programs in single cells

AggregateExpression()

Aggregated feature expression by identity class

AverageExpression()

Averaged feature expression by identity class

CaseMatch()

Match the case of character vectors

CellCycleScoring()

Score cell cycle phases

CollapseSpeciesExpressionMatrix()

Slim down a multi-species expression matrix, when only one species is primarily of interenst.

CreateCategoryMatrix()

Create one hot matrix for a given label

CustomDistance()

Run a custom distance function on an input data matrix

ExpMean()

Calculate the mean of logged values

ExpSD()

Calculate the standard deviation of logged values

ExpVar()

Calculate the variance of logged values

FastRowScale()

Scale and/or center matrix rowwise

GroupCorrelation()

Compute the correlation of features broken down by groups with another covariate

LoadAnnoyIndex()

Load the Annoy index file

LogVMR()

Calculate the variance to mean ratio of logged values

MetaFeature()

Aggregate expression of multiple features into a single feature

MinMax()

Apply a ceiling and floor to all values in a matrix

PercentAbove()

Calculate the percentage of a vector above some threshold

PercentageFeatureSet()

Calculate the percentage of all counts that belong to a given set of features

PseudobulkExpression()

Pseudobulk Expression

RPCAIntegration()

Seurat-RPCA Integration

RegroupIdents()

Regroup idents based on meta.data info

SaveAnnoyIndex()

Save the Annoy index

SetQuantile()

Find the Quantile of Data

GeneSymbolThesarus() UpdateSymbolList()

Get updated synonyms for gene symbols

as.sparse(<H5Group>) as.data.frame(<Matrix>)

Cast to Sparse

Data

Descriptions of data included with Seurat

cc.genes

Cell cycle genes

cc.genes.updated.2019

Cell cycle genes: 2019 update

Convenience functions

Functions included for user convenience and to keep maintain backwards compatability

DimHeatmap() PCHeatmap()

Dimensional reduction heatmap

DimPlot() PCAPlot() TSNEPlot() UMAPPlot()

Dimensional reduction plot

ReadParseBio()

Read output from Parse Biosciences

ReadSTARsolo()

Read output from STARsolo

SpatialPlot() SpatialDimPlot() SpatialFeaturePlot()

Visualize spatial clustering and expression data.

Sketching

Functions for flexible analysis of massively scalable datasets

LeverageScore()

Leverage Score Calculation

ProjectData()

Project full data to the sketch assay

SketchData()

Sketch Data

TransferSketchLabels()

Transfer data from sketch data to full data

Re-exports

Functions re-exported from other packages

components() `%||%` `%iff%`

Objects exported from other packages

Seurat-class

The Seurat Class

Assay-class

The Assay Class

DimReduc-class

The DimReduc Class

Neighbor-class

The Neighbor Class

Graph-class

The Graph Class

SpatialImage-class

The SpatialImage Class

JackStrawData-class

The JackStrawData Class

SeuratCommand-class

The SeuratCommand Class

Seurat Seurat-package

Seurat: Tools for Single Cell Genomics