Normalize Raw Data
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)
# S3 method for data.frame
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)
# S3 method for V3Matrix
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)
# S3 method for default
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)
Matrix with the raw count data
Scale the data; default is 1e4
Margin to normalize over
Print progress
Arguments passed to other methods
A matrix with the normalized and log-transformed data
mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5)
mat
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0 0 2 2 0
#> [2,] 2 0 1 2 1
#> [3,] 3 0 1 0 0
#> [4,] 1 1 3 1 1
#> [5,] 1 1 1 0 2
mat_norm <- LogNormalize(data = mat)
mat_norm
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.000000 0.000000 7.824446 8.294300 0.000000
#> [2,] 7.957927 0.000000 7.131699 8.294300 7.824446
#> [3,] 8.363276 0.000000 7.131699 0.000000 0.000000
#> [4,] 7.265130 8.517393 8.229778 7.601402 7.824446
#> [5,] 7.265130 8.517393 7.131699 0.000000 8.517393