Return a list of genes with the strongest contribution to a set of components

TopCells(object, dim = 1, ncells = 20, balanced = FALSE, ...)

Arguments

object

DimReduc object

dim

Dimension to use

ncells

Number of cells to return

balanced

Return an equal number of cells with both + and - scores.

...

Extra parameters passed to Embeddings

Value

Returns a vector of cells

Examples

data("pbmc_small")
pbmc_small
#> An object of class Seurat 
#> 230 features across 80 samples within 1 assay 
#> Active assay: RNA (230 features, 20 variable features)
#>  3 layers present: counts, data, scale.data
#>  2 dimensional reductions calculated: pca, tsne
head(TopCells(object = pbmc_small[["pca"]]))
#> [1] "ACGTGATGCCATGA" "ATACCACTCTAAGC" "ATTGCACTTGCTTT" "CTAGGTGATGGTTG"
#> [5] "GACATTCTCCACCT" "ATAGGAGAAACAGA"
# Can specify which dimension and how many cells to return
TopCells(object = pbmc_small[["pca"]], dim = 2, ncells = 5)
#> [1] "ACAGGTACTGGTGT" "GTTGACGATATCGG" "GGCATATGCTTATC" "CTAACGGAACCGAT"
#> [5] "CATTACACCAACTG"