
Package ‘loomR’
April 23, 2018

Type Package

Title An R interface for loom files

Version 0.2.0

Date 2018-23-18

Description An interface for the single-cell RNAseq-oriented loom format. Loom files are an HDF5-
based format for storing and interacting with large single-cell RNAseq datasets. loomR pro-
vides an interface for working with loom files in a loom-specific way; we provide rou-
tines for validating loom files, iterating with chunks through data within the loom file, and pro-
vide a platform for other packages to build support for loom files.

URL https://github.com/mojaveazure/loomR http://loompy.org/

BugReports https://github.com/mojaveazure/loomR/issues

Depends R (>= 3.2.2),
R6,
hdf5r,
iterators,
itertools

Imports utils,
Matrix,
methods

Suggests Seurat

Collate 'internal.R'
'loom.R'
'package.R'

License GPL-3

Encoding UTF-8

LazyData true

SystemRequirements HDF5 (>= 1.8.13)

RoxygenNote 6.0.1

1

https://github.com/mojaveazure/loomR
http://loompy.org/
https://github.com/mojaveazure/loomR/issues

2 loomR-package

R topics documented:
loomR-package . 2
combine . 5
connect . 6
create . 7
loom . 8
subset.loom . 10

Index 12

loomR-package An R interface for loom files

Description

loomR provides an interface for working with loom files in a loom-specific way. We provide rou-
tines for validating loom files, iterating with chunks through data within the loom file, and provide
a platform for other packages to build support for loom files. Unlike other HDF5 pacakges, loomR
actively protectes a loom file’s structure, enabling the user to focus on their analysis and not worry
about the integrity of their data.

Semantics

Throughout all loomR-related documentation and writing, the following styles for distinguising
between loom files, loom objects, and loomR will and be used. When talking about loom files, or
the actual HDF5 file on disk, the word ’loom’ will be written in normal text. Capitalization will
be done based on a language’s rules for capitalization in sentences. For English, that means if the
word ’loom’ appears at the beginning of a sentence and is being used to refer to a loom file, it will
be capilatized. Otherwise, it will be lowercase. For loom objects, or the object within R, the word
’loom’ will always be lowercase and written in monospaced text. When referring to the pacakge
loomR, it will always be written in normal text with the ’l’, ’o’s, and ’m’ lowercased and the ’R’
uppercased. This style will be used throughout documentation for loomR as well as any vignettes
and tutorials produced by the authors.

Loom Files

Loom files are an HDF5-based format for storing and interacting with large single-cell RNAseq
datasets. Each loom file has at least six parts to it: the raw expression data (matrix), groups for
gene- and cell-metadata (row_attrs and col_attrs, respectively), groups for gene-based and cell-
based cluster graphs (row_graphs and col_graphs, respectively), and layers, a group containing
alternative representations of the data in matrix. Each dataset within the loom file has rules as to
what size it may be, creating a structure for the entire loom file and all the data within. This structure
is enforced to ensure that data remains intact and retriveable when spread across the various datasets
in the loom file.

matrix The dataset that sets the dimensions for most other datasets within a loom file. This dataset
has ’n’ genes and ’m’ cells. Due to the way that loomR presents data, this will appear as ’m’

loomR-package 3

rows and ’n’ columns. However, other HDF5 libraries will generally present the data as ’n’
rows and ’m’ columns

row_attrs and col_attrs These are one- or two-dimensional datasets where a specific dimen-
sion is of length ’n’, for row attributes, or ’m’, for column attributes. Within loomR, this
must be the second dimension of two-dimensional datasets, or the length of one-dimensional
datasets Most other HDF5 libraries will show this specific dimension as the first dimension
for two-dimensional datasets, or the length of one-dimensional datasets.

row_graphs and col_graphs Unlike other datasets within a loom file, these are not controlled by
matrix. Instead, within these groups are groups for specific graphs. Each graph group will
have three datasets that represent the graph in coordinate format: a for row indices, b for
column indices, and w for values. Each dataset within a graph must be one-dimensional and
all datasets within a graph must be the same length. Not all graphs must be the same length as
each other.

layers Each dataset within layers must have the exact same dimensions as matrix

Chunk-based iteration

As loom files can theoretically hold million-cell datasets, performing analysis on these datasets can
be impossible due to the memory requirements for holding such a dataset in memory. To combat
this problem, loom objects offer native chunk-based iteration through the batch.scan, batch.next,
map, and apply methods. This section will cover the former two methods; the latter two are covered
in the loomR tutorial.

batch.scan and batch.next are the heart of all chunk-based iteration in the loom object. These
two methods make use of itertools::ichunk object to chunk through the data in a loom file. Due
to the way that R works, batch.scan initializes the iterator and batch.next moves through the
iterator.

The batch.scan method will break a dataset in the loom file into chunks, based on a chunk size
given to it. batch.scan will work on any dataset, except for two-dimensional attributes and any
graph dataset. When iterating over matrix and the layers, the MARGIN argument tells the loom
object which way to chunk the data. A MARGIN of 1 will chunk over genes while a MARGIN of 2
will chunk over cells. For one-dimmensional attributes, MARGIN is ignored. batch.scan returns an
integer whose length is the number of iterations it takes to iterate over the dataset selected.

Pulling data in chunks is done by batch.next. This method simply returns the next chunk of data.
If return.data = FALSE is passed, batch.next will instead return the indices of the next chunk.
When using these methods, we recommend storing the results of batch.scan and iterating through
this vector to keep track of where the loom object is in the iteration.

Set up the iterator on the `loom` object lfile
batch <- lfile$batch.scan(dataset.use = 'matrix', MARGIN = 2)
Iterate through the dataset, pulling data
If `return.data = FALSE` is passed, the indices
of the next chunk will be returned instead
for (i in batch) {
data.use <- lfile$batch.next()

}

https://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_(COO)
http://satijalab.org/loomR/loomR_tutorial.html

4 loomR-package

Extending loomR

The loom class is the heart of loomR. This class is written in the R6 object style and can be extended
in three ways. For each of the following, one be discretionary when return is used instead of
invisible. As loom object are merely handles to loom files, any function or method that modifies
the file should not need to return anything. However, we recommend always returning the loom
object invisibly, using invisible. While not necessary for functionality, it means that objects in a
user’s environment won’t get overwritten if they try to reassign their loom object to the output of a
function. For functions and methods that don’t modify the loom file, and instead return data, then
the return function should be used.

The first way to extend loom objects is by subclassing the object and making a new R6 class.
This allows new classes to declare custom R6 methods and gain access to all of the loom object’s
methods, including S3- and S4-style methods. New classes can also overwrite any methods for
loom objects, allowing the extender to change the core behaviour of loom objects. While this option
allows the greatest control and access to the loom object, it involves the greatest amount of work
as one would need to write a new R6 class and all the associated boilerplate code. As such, we
recommend subclassing loom objects when a new class is needed, but would advise developers to
use the other methods of extending loom objects for simpler tasks.

The second way is by using S4-style methods can be written for loom objects. loomR exports
the loom class as an S4 class, allowing one to write highly-specialized methods that enforce class-
specificity and can change behaviour based on the classes of other objects provided to a function.
S4 methods look like normal functions to the end user, but can do different things based on the class,
or classes, of objects passed to it. This allows for highly-customized routines without cluttering a
package’s namespace, as only the generic function is exported. S4 methods can also be written for
generics exported by other packages, assuming the said generic has been imported before writing
new methods. Furthermore, generics and methods can be kept internally, and R will dispatch the
appropriate method as if the generic was exported. However, S4 methods have the drawback of not
autocompleting arguments in the terminal or RStudio. This means that the user may need to keep
documentation open while using these methods, which detracts from the user-friendliness of these
methods. Finally, while there is less boilerplate in declaring S4 generics and methods than declaring
R6 classes and methods, there is still more to write than our last method. As such, we recommend
S4 methods for anyone who needs method dispatch for internal functions only.

#' @export SomeFunction
methods::setGeneric(
name = 'SomeFunction',
def = function(object, ...) {
return(standardGeneric(f = 'SomeFunction))

}
)

Note, no extra Roxygen notes needed
methods::setMethod(
f = 'SomeFunction',
signature = c('object' = 'loom'),
definition = function(object, loom.param, ...) {
do something

}
)

https://cran.r-project.org/web/packages/R6/vignettes/Introduction.html

combine 5

As R6 objects are based on S3 objects, the final way to extend loom objects is by writing S3-style
methods. These methods involve the least amount of boilerplate to set up. S3 generics are written
just like normal functions, albiet with a few differences. Firstly, they have two arguments: the
argument that determines the class for dispatching and ... to pass other arguments to methods.
Finally, the only thing an S3 generic needs to do is call UseMethod to allow R to dispatch based on
the class of whatever the object is. Unlike S4 methods, S3 methods provide tab-autocompletion for
method-specific arguments, providing help messages along the way. This means that S3 methods
are more user-friendly than S4 methods. Like S4 methods, S3 methods can use S3 generics declared
by other packages, with the same assumptions about imports applying here as well. However, S3
methods cannot be kept internally, and must be exported for R to properly dispatch the method. This
means that a package’s namespace will have n + 1 functions declared for every S3 generic, where n
is the number of classes a method is declared for and the one extra is for the generic. Furthermore,
as the methods themselves are exported, anyone can simply use the method directly rather than go
through the generic and have R dispatch a method based on object class. Despite these drawbacks,
S3 methods are how we recommend one extends loomR unless one needs the specific features of
R6 classes or S4-style methods.

#' @export somefunction
somefunction <- function(object, ...) {
UseMethod('somefunction', object)

}

#' @export somefunction.loom
#' @method somefunction loom
somefunction.loom <- function(object, loom.param, ...) {
do something

}

combine Combine loom files

Description

Combine loom files

Usage

combine(looms, filename, chunk.size = 1000, order.by = NULL,
overwrite = FALSE, display.progress = TRUE, ...)

Arguments

looms A list of loom objects or paths to loom files

filename Name for resultant loom file

chunk.size How many rows from each input loom should we stream to the merged loom file
at any given time?

6 connect

order.by Optional row attribute to order each input loom by, must be one dimensional

overwrite Overwrite filename if already exists?

display.progress

Display progress as we’re copying over data

Value

A loom object connected to filename

See Also

loom

connect Connect to a loom file

Description

Connect to a loom file

Usage

connect(filename, mode = "r", skip.validate = FALSE)

Arguments

filename The loom file to connect to

mode How do we connect to it? Pass ’r’ for read-only or ’r+’ for read/write. If mode is
’r+’, loomR will automatically add missing required groups during validation

skip.validate Skip the validation steps, use only for extremely large loom files

Value

A loom file connection

See Also

loom

create 7

create Create a loom object

Description

Create a loom object

Usage

create(filename, data, gene.attrs = NULL, cell.attrs = NULL,
layers = NULL, chunk.dims = "auto", chunk.size = 1000,
do.transpose = TRUE, calc.numi = FALSE, overwrite = FALSE,
display.progress = TRUE)

Arguments

filename The name of the new loom file

data The data for /matrix. If cells are rows and genes are columns, set do.transpose = FALSE;
otherwise, set do.transpose = TRUE

gene.attrs A named list of vectors with extra data for genes, each vector must be as long as
the number of genes in data

cell.attrs A named list of vectors with extra data for cells, each vector must be as long as
the number of cells in data

chunk.dims A one- or two-length integer vector of chunksizes for /matrix, defaults to ’auto’
to automatically determine chunksize

chunk.size How many rows of data should we stream to the loom file at any given time?

do.transpose Transpose the input? Should be TRUE if data has genes as rows and cells as
columns

calc.numi Calculate number of UMIs and genes expressed per cell? Will store in ’col_attrs/nUMI’
and ’col_attrs/nGene’, overwriting anything passed to cel.attrs; To set a cus-
tom threshold for gene expression, pass an integer value (eg. calc.numi = 5
for a threshold of five counts per cell)

overwrite Overwrite an already existing loom file?

Value

A connection to a loom file

See Also

loom

8 loom

loom A class for connections loom files

Description

A class for connections loom files

Usage

lfile <- loomR::connect(filename = 'myfile.loom')

Format

An R6::R6Class object

Fields

version Version of loomR object was created under

shape Shape of /matrix in genes (columns) by cells (rows)

chunksize Chunks set for this dataset in columns (cells) by rows (genes)

matrix The main data matrix, stored as columns (cells) by rows (genes)

layers Additional data matricies, the same shape as /matrix

col.attrs Extra information about cells

row.attrs Extra information about genes

Methods

add.graph(a, b, w, name, MARGIN, overwrite), add.graph.matrix(mat, name, MARGIN, overwrite)
Add a graph to the loom object; can add either in coorindate format (add.graph) or matrix for-
mat (add.graph.matrix). Stores graph in coordinate format as [row, col]_graphs/name/a
(row indices), [row, col]_graphs/name/b (column indices), and [row, col]_graphs/name/w
(values)

a Integer vector of row indices for graph, must be the same lengths as b and w

b Integer vector of column indices for graph, must be the same lengths as a and w

w Numeric vector of values for graph, must be the same lengths as a and b

mat Graph provided as a matrix (sparse or dense) or data.frame
name Name to store graph, will end up being col_graphs/name or row_graphs/name, de-

pending on MARGIN

MARGIN Store the graph in row_graphs (1) or col_graphs (2), defaults to 2
overwrite Can overwrite existing graph?

add.layer(layer, chunk.size, overwrite) Add a data layer to this loom file, must be the
same dimensions as /matrix

layer A named list of matrices to be added as layers

loom 9

chunk.size Number of rows from each layer to stream at once, defaults to 1000
overwrite If a layer already exists, overwrite with new data, defaults to FALSE

add.attribute(attribute, MARGIN, overwrite) Add extra information to this loom file.

attribute A named list where the first dimmension of each element as long as one dimen-
sion of /matrix

MARGIN Either 1 for genes or 2 for cells
overwrite Can overwrite existing attributes?

add.row.attribute(attribute), add.col.attribute(attribute) Add row or column attributes

get.attribute.df(MARGIN, attribute.names, row.names, col.names) Get a group of row
or column attributes as a data frame, will only return attributes that have one dimension

MARGIN Either ’1’ or ’2’ to get row- or column-attributes, respectively
attribute.names A vector of attribute dataset basenames
row.names Basename of the rownames dataset
col.names Basename of the colnames dataset

get.graph(name, MARGIN) Get a graph as a sparse matrix

name Name of the graph, can be either the basename or full name of the grpah
MARGIN Load the graph from row_graphs (1) or col_graphs (2), defaults to 2. Ignored if

full path to graph is passed to name

batch.scan(chunk.size, MARGIN, index.use, dataset.use, force.reset), batch.next(return.data)
Scan a dataset in the loom file from index.use[1] to index.use[2], iterating by chunk.size.

chunk.size Size to chunk MARGIN by, defaults to self$chunksize

MARGIN Iterate over genes (1) or cells (2), defaults to 2
index.use Which specific values of dataset.use to use, defaults to 1:self$shape[MARGIN]

(all values)
dataset.use Name of dataset to use, can be the name, not group/name, unless the name is

present in multiple groups
force.reset Force a reset of the internal iterator
return.data Return data for a given chunk, if FALSE, returns the indices across MARGIN for

said chunk

apply(name, FUN, MARGIN, chunk.size, dataset.use, overwrite, display.progress, ...)
Apply a function over a dataset within the loom file, stores the results in the loom file. Will
not make multidimensional attributes.

name Full name (’group/name’) of dataset to store results to
FUN Function to apply
MARGIN Iterate over genes (1) or cells (2), defaults to 2
index.use Which specific values of dataset.use to use, defaults to 1:self$shape[MARGIN]

(all values)
chunk.size Size to chunk MARGIN by, defaults to self$chunksize

dataset.use Name of dataset to use
overwrite Overite name if already exists
display.progress Display progress
... Extra parameters to pass to FUN

10 subset.loom

map(FUN, MARGIN, chunk.size, index.use, dataset.use, display.progress, expected, ...)
Map a function onto a dataset within the loom file, returns the result into R.

FUN

MARGIN Iterate over genes (1) or cells (2), defaults to 2
chunk.size Size to chunk MARGIN by, defaults to self$chunksize

index.use Which specific values of dataset.use to use, defaults to 1:self$shape[MARGIN]
(all values)

dataset.use Name of dataset to use
display.progress Display progress
... Extra parameters to pass to FUN

add.cells(matrix.data, attributes.data = NULL, layers.data = NULL, display.progress = TRUE)
Add cells to a loom file.

matrix.data A list of m2 cells where each entry is a vector of length n (num genes, self$shape[1])
attributes.data A list where each entry is named for one of the datasets in self[['col_attrs']];

each entry is a vector of length m2.
layers.data A list where each entry is named for one of the datasets in self[['layers']];

each entry is an n-by-m2 matrix where n is the number of genes in this loom file and m2
is the number of cells being added.

display.progress Display progress

add.loom(other, other.key, self.key, ...) Add the contents of another loom file to this
one.

other An object of class loom or a filename of another loom file
other.key Row attribute in other to add by
self.key Row attribute in this loom file to add by
... Ignored for now

See Also

loomR, hdf5r::H5File

subset.loom Subset a loom file

Description

Subset a loom file

Usage

S3 method for class 'loom'
subset(x, m = NULL, n = NULL, filename = NULL,
chunk.size = 1000, overwrite = FALSE, display.progress = TRUE, ...)

subset.loom 11

Arguments

x A loom object

m Rows (cells) to subset, defaults to all rows

n Columns (genes) to subset, defaults to all columns

filename Filename for new loom object, defaults to ...

chunk.size Chunk size to iterate through x

overwrite Overwrite filename if already exists?
display.progress

Display progress bars?

... Ignored for now

Value

A loom object connected to filename

See Also

loom

Index

∗Topic datasets
loom, 8

combine, 5
connect, 6
create, 7

hdf5r::H5File, 10

invisible, 4
itertools::ichunk, 3

loom, 6, 7, 8, 11
loom-class (loom), 8
loomR, 10
loomR-package, 2

R6::R6Class, 8

subset (subset.loom), 10
subset.loom, 10

12

	loomR-package
	combine
	connect
	create
	loom
	subset.loom
	Index

